Vero to Google Data Studio

This page provides you with instructions on how to extract data from Vero and analyze it in Google Data Studio. (If the mechanics of extracting data from Vero seem too complex or difficult to maintain, check out Stitch, which can do all the heavy lifting for you in just a few clicks.)

What is Vero?

Vero is an event-driven email platform businesses can use to drive customer interaction campaigns.

Getting data out of Vero

You can collect that data from Vero's servers using webhooks and user-defined HTTP callbacks. Set up the webhook in your Vero account and define a URL that your script listens to and from which it can collect data.

Sample Vero data

Once you've set up HTTP endpoints, Vero will begin sending data via the POST request method. You can access useful objects such as sent, delivered, opened, clicked, bounced, and unsubscribed. Data will be enclosed in the body of the request in JSON format. Here's a sample of what an inbound webhook with data from the Vero endpoint looks like.

{
        "sent_at":1435016238,
        "type":"sent",
        "user": {
            "id":123,
            "email":"steve@getvero.com"
        },
        "campaign": {
            "id":987,
            "type":"transactional",
            "name":"Order confirmation",
            "subject":"Your order is being processed!",
            "trigger-event":"purchased item",
            "permalink":"http://app.getvero.com/view/1/341d64944577ac1f70f560e37db54a25",
            "variation":"Variation A"
        }
    }

Keeping Vero data up to date

At this point you've coded up a script or written a program to get the data you want and successfully moved it into your data warehouse. But how will you load new or updated data? It's not a good idea to replicate all of your data each time you have updated records. That process would be painfully slow and resource-intensive.

Instead, identify key fields that your script can use to bookmark its progression through the data and use to pick up where it left off as it looks for updated data. Auto-incrementing fields such as updated_at or created_at work best for this. When you've built in this functionality, you can set up your script as a cron job or continuous loop to get new data as it appears in Vero.

And remember, as with any code, once you write it, you have to maintain it. If Vero modifies its API, or the API sends a field with a datatype your code doesn't recognize, you may have to modify the script. If your users want slightly different information, you definitely will have to.

From Vero to your data warehouse: An easier solution

As mentioned earlier, the best practice for analyzing Vero data in Google Data Studio is to store that data inside a data warehousing platform alongside data from your other databases and third-party sources. You can find instructions for doing these extractions for leading warehouses on our sister sites Vero to Redshift, Vero to BigQuery, and Vero to Snowflake.

Easier yet, however, is using a solution that does all that work for you. Products like Stitch were built to solve this problem automatically. With just a few clicks, Stitch starts extracting your Vero data via the API, structuring it in a way that is optimized for analysis, and inserting that data into a data warehouse that can be easily accessed and analyzed by Google Data Studio.